Nesting in rxode2
More than one level of nesting is possible in rxode2; In this example we will be using the following uncertainties and sources of variability:
Level | Variable | Matrix specified | Integrated Matrix |
---|---|---|---|
Model uncertainty | NA | thetaMat |
thetaMat |
Investigator |
inv.Cl , inv.Ka
|
omega |
theta |
Subject |
eta.Cl , eta.Ka
|
omega |
omega |
Eye |
eye.Cl , eye.Ka
|
omega |
omega |
Occasion |
iov.Cl , occ.Ka
|
omega |
omega |
Unexplained Concentration | prop.sd |
sigma |
sigma |
Unexplained Effect | add.sd |
sigma |
sigma |
Event table
This event table contains nesting variables:
- inv: investigator id
- id: subject id
- eye: eye id (left or right)
- occ: occasion
#> rxode2 3.0.3 using 2 threads (see ?getRxThreads)
#> no cache: create with `rxCreateCache()`
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
et(amountUnits="mg", timeUnits="hours") %>%
et(amt=10000, addl=9,ii=12,cmt="depot") %>%
et(time=120, amt=2000, addl=4, ii=14, cmt="depot") %>%
et(seq(0, 240, by=4)) %>% # Assumes sampling when there is no dosing information
et(seq(0, 240, by=4) + 0.1) %>% ## adds 0.1 for separate eye
et(id=1:20) %>%
## Add an occasion per dose
mutate(occ=cumsum(!is.na(amt))) %>%
mutate(occ=ifelse(occ == 0, 1, occ)) %>%
mutate(occ=2- occ %% 2) %>%
mutate(eye=ifelse(round(time) == time, 1, 2)) %>%
mutate(inv=ifelse(id < 10, 1, 2)) %>% as_tibble ->
ev
rxode2 model
This creates the rxode2
model with multi-level nesting.
Note the variables inv.Cl
, inv.Ka
,
eta.Cl
etc; You only need one variable for each level of
nesting.
mod <- rxode2({
## Clearance with individuals
eff(0) = 1
C2 = centr/V2*(1+prop.sd)
C3 = peri/V3
CL = TCl*exp(eta.Cl + eye.Cl + iov.Cl + inv.Cl)
KA = TKA * exp(eta.Ka + eye.Ka + iov.Cl + inv.Ka)
d/dt(depot) =-KA*depot
d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3
d/dt(peri) = Q*C2 - Q*C3
d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff
ef0 = eff + add.sd
})
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
Uncertainty in Model parameters
theta <- c("TKA"=0.294, "TCl"=18.6, "V2"=40.2,
"Q"=10.5, "V3"=297, "Kin"=1, "Kout"=1, "EC50"=200)
## Creating covariance matrix
tmp <- matrix(rnorm(8^2), 8, 8)
tMat <- tcrossprod(tmp, tmp) / (8 ^ 2)
dimnames(tMat) <- list(names(theta), names(theta))
tMat
#> TKA TCl V2 Q V3
#> TKA 0.173571236 -0.1003204607 0.038185010 -0.004108928 -0.095032973
#> TCl -0.100320461 0.2195710868 -0.043849095 0.013295549 -0.007477895
#> V2 0.038185010 -0.0438490948 0.129784612 -0.017270432 -0.038004762
#> Q -0.004108928 0.0132955493 -0.017270432 0.022145634 0.020376451
#> V3 -0.095032973 -0.0074778948 -0.038004762 0.020376451 0.165568340
#> Kin -0.040867119 -0.0492597458 -0.003056722 -0.033468634 -0.003021883
#> Kout 0.035469225 0.0275087955 0.033725901 0.027668205 0.005497301
#> EC50 0.026158042 0.0009434711 0.039426946 -0.036283167 -0.093134292
#> Kin Kout EC50
#> TKA -0.040867119 0.035469225 0.0261580416
#> TCl -0.049259746 0.027508796 0.0009434711
#> V2 -0.003056722 0.033725901 0.0394269465
#> Q -0.033468634 0.027668205 -0.0362831667
#> V3 -0.003021883 0.005497301 -0.0931342922
#> Kin 0.226735493 -0.083447793 0.0659884544
#> Kout -0.083447793 0.117195570 -0.0291684598
#> EC50 0.065988454 -0.029168460 0.0928611407
Nesting Variability
To specify multiple levels of nesting, you can specify it as a nested
lotri
matrix; When using this approach you use the
condition operator |
to specify what variable nesting
occurs on; For the Bayesian simulation we need to specify how much
information we have for each parameter; For rxode2
this is
the nu
parameter.
In this case: - id, nu=100
or the model came from 100
subjects - eye, nu=200
or the model came from 200 eyes -
occ, nu=200
or the model came from 200 occasions - inv,
nu=10
or the model came from 10 investigators
To specify this in lotri
you can use
| var(nu=X)
, or:
omega <- lotri(lotri(eta.Cl ~ 0.1,
eta.Ka ~ 0.1) | id(nu=100),
lotri(eye.Cl ~ 0.05,
eye.Ka ~ 0.05) | eye(nu=200),
lotri(iov.Cl ~ 0.01,
iov.Ka ~ 0.01) | occ(nu=200),
lotri(inv.Cl ~ 0.02,
inv.Ka ~ 0.02) | inv(nu=10))
omega
#> $id
#> eta.Cl eta.Ka
#> eta.Cl 0.1 0.0
#> eta.Ka 0.0 0.1
#>
#> $eye
#> eye.Cl eye.Ka
#> eye.Cl 0.05 0.00
#> eye.Ka 0.00 0.05
#>
#> $occ
#> iov.Cl iov.Ka
#> iov.Cl 0.01 0.00
#> iov.Ka 0.00 0.01
#>
#> $inv
#> inv.Cl inv.Ka
#> inv.Cl 0.02 0.00
#> inv.Ka 0.00 0.02
#>
#> Properties: nu
Unexplained variability
The last piece of variability to specify is the unexplained variability
sigma <- lotri(prop.sd ~ .25,
add.sd~ 0.125)
Solving the problem
s <- rxSolve(mod, theta, ev,
thetaMat=tMat, omega=omega,
sigma=sigma, sigmaDf=400,
nStud=400)
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
#> unhandled error message: EE:[lsoda] 70000 steps taken before reaching tout
#> @(lsoda.c:754
#> Warning: some ID(s) could not solve the ODEs correctly; These values are
#> replaced with 'NA'
print(s)
#> -- Solved rxode2 object --
#> -- Parameters ($params): --
#> # A tibble: 8,000 x 24
#> sim.id id `inv.Cl(inv==1)` `inv.Cl(inv==2)` `inv.Ka(inv==1)`
#> <int> <fct> <dbl> <dbl> <dbl>
#> 1 1 1 0.00900 -0.117 0.312
#> 2 1 2 0.00900 -0.117 0.312
#> 3 1 3 0.00900 -0.117 0.312
#> 4 1 4 0.00900 -0.117 0.312
#> 5 1 5 0.00900 -0.117 0.312
#> 6 1 6 0.00900 -0.117 0.312
#> 7 1 7 0.00900 -0.117 0.312
#> 8 1 8 0.00900 -0.117 0.312
#> 9 1 9 0.00900 -0.117 0.312
#> 10 1 10 0.00900 -0.117 0.312
#> # i 7,990 more rows
#> # i 19 more variables: `inv.Ka(inv==2)` <dbl>, `eye.Cl(eye==1)` <dbl>,
#> # `eye.Cl(eye==2)` <dbl>, `eye.Ka(eye==1)` <dbl>, `eye.Ka(eye==2)` <dbl>,
#> # `iov.Cl(occ==1)` <dbl>, `iov.Cl(occ==2)` <dbl>, `iov.Ka(occ==1)` <dbl>,
#> # `iov.Ka(occ==2)` <dbl>, V2 <dbl>, V3 <dbl>, TCl <dbl>, eta.Cl <dbl>,
#> # TKA <dbl>, eta.Ka <dbl>, Q <dbl>, Kin <dbl>, Kout <dbl>, EC50 <dbl>
#> -- Initial Conditions ($inits): --
#> depot centr peri eff
#> 0 0 0 1
#>
#> Simulation with uncertainty in:
#> * parameters ($thetaMat for changes)
#> * omega matrix ($omegaList)
#>
#> -- First part of data (object): --
#> # A tibble: 976,000 x 21
#> sim.id id time inv.Cl inv.Ka eye.Cl eye.Ka iov.Cl iov.Ka C2 C3
#> <int> <int> [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0 0.00900 0.312 -0.330 -0.0547 0.0370 0.139 0 0
#> 2 1 1 0.1 0.00900 0.312 0.0792 0.185 0.0370 0.139 10.9 0.0108
#> 3 1 1 4 0.00900 0.312 -0.330 -0.0547 0.0370 0.139 41.4 5.58
#> 4 1 1 4.1 0.00900 0.312 0.0792 0.185 0.0370 0.139 20.6 5.69
#> 5 1 1 8 0.00900 0.312 -0.330 -0.0547 0.0370 0.139 4.67 7.95
#> 6 1 1 8.1 0.00900 0.312 0.0792 0.185 0.0370 0.139 12.9 7.97
#> # i 975,994 more rows
#> # i 10 more variables: CL <dbl>, KA <dbl>, ef0 <dbl>, depot <dbl>, centr <dbl>,
#> # peri <dbl>, eff <dbl>, occ <fct>, eye <fct>, inv <fct>
There are multiple investigators in a study; Each investigator has a
number of individuals enrolled at their site. rxode2
automatically determines the number of investigators and then will
simulate an effect for each investigator. With the output,
inv.Cl(inv==1)
will be the inv.Cl
for
investigator 1, inv.Cl(inv==2)
will be the
inv.Cl
for investigator 2, etc.
inv.Cl(inv==1)
, inv.Cl(inv==2)
, etc will be
simulated for each study and then combined to form the between
investigator variability. In equation form these represent the
following:
inv.Cl = (inv == 1) * `inv.Cl(inv==1)` + (inv == 2) * `inv.Cl(inv==2)`
If you look at the simulated parameters you can see
inv.Cl(inv==1)
and inv.Cl(inv==2)
are in the
s$params
; They are the same for each study:
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
#> 1 1 1 0.008995575 -0.1165083 0.3118205 -0.001926179
#> 2 1 2 0.008995575 -0.1165083 0.3118205 -0.001926179
#> 3 1 3 0.008995575 -0.1165083 0.3118205 -0.001926179
#> 4 1 4 0.008995575 -0.1165083 0.3118205 -0.001926179
#> 5 1 5 0.008995575 -0.1165083 0.3118205 -0.001926179
#> 6 1 6 0.008995575 -0.1165083 0.3118205 -0.001926179
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
#> 1 -0.33023666 0.079190835 -0.05471051 0.18487157 0.037021761
#> 2 -0.42211135 -0.006773841 -0.15399939 0.22463048 -0.007762485
#> 3 -0.05128596 0.123504458 0.18243012 0.13361259 -0.168921159
#> 4 -0.06360621 0.340443016 0.65606292 0.04807945 0.157027939
#> 5 0.08009126 -0.027627640 0.06662396 -0.05838949 -0.226341946
#> 6 -0.11937190 0.090540884 -0.17320340 0.02039840 -0.211648032
#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
#> 1 -0.19726803 0.13932112 0.088763868 40.26476 296.4748 19.25043
#> 2 0.04555116 0.07716277 0.049148937 40.26476 296.4748 19.25043
#> 3 0.17916513 0.08347085 -0.002990168 40.26476 296.4748 19.25043
#> 4 -0.13444417 0.24736740 -0.077647794 40.26476 296.4748 19.25043
#> 5 0.02049190 -0.09568733 0.054658457 40.26476 296.4748 19.25043
#> 6 0.12619350 -0.01547841 0.040206608 40.26476 296.4748 19.25043
#> eta.Cl TKA eta.Ka Q Kin Kout EC50
#> 1 0.09788109 0.2354877 -0.21526790 10.43157 0.9256189 1.044937 200.3679
#> 2 0.33302598 0.2354877 -0.01028112 10.43157 0.9256189 1.044937 200.3679
#> 3 0.08504325 0.2354877 0.37253705 10.43157 0.9256189 1.044937 200.3679
#> 4 0.16521678 0.2354877 -0.01859974 10.43157 0.9256189 1.044937 200.3679
#> 5 0.53131380 0.2354877 -0.37109644 10.43157 0.9256189 1.044937 200.3679
#> 6 -0.30786713 0.2354877 0.14897588 10.43157 0.9256189 1.044937 200.3679
#> sim.id id inv.Cl(inv==1) inv.Cl(inv==2) inv.Ka(inv==1) inv.Ka(inv==2)
#> 1 2 1 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> 2 2 2 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> 3 2 3 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> 4 2 4 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> 5 2 5 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> 6 2 6 -0.07227613 -0.01884171 0.07620864 -0.01962499
#> eye.Cl(eye==1) eye.Cl(eye==2) eye.Ka(eye==1) eye.Ka(eye==2) iov.Cl(occ==1)
#> 1 -0.25102634 0.1354374 -0.135230741 -0.01605664 0.081212198
#> 2 -0.24832622 0.2233348 -0.380770273 -0.37101991 0.207985292
#> 3 0.24081384 -0.3826770 0.133361609 -0.32496203 -0.099983807
#> 4 -0.11021791 0.3655308 0.009423897 0.08736599 -0.002580804
#> 5 0.21155058 0.3626918 0.194977611 -0.19452347 0.058392202
#> 6 0.03663028 -0.1003754 0.068047203 0.32368023 0.167658084
#> iov.Cl(occ==2) iov.Ka(occ==1) iov.Ka(occ==2) V2 V3 TCl
#> 1 -0.06556217 -0.032678168 -0.061277262 40.21091 296.6424 18.86433
#> 2 -0.05016896 0.130258486 -0.103721118 40.21091 296.6424 18.86433
#> 3 0.06144127 -0.262726137 -0.104186144 40.21091 296.6424 18.86433
#> 4 0.03954265 -0.037289852 -0.021344468 40.21091 296.6424 18.86433
#> 5 0.12713682 -0.007530921 0.081238197 40.21091 296.6424 18.86433
#> 6 -0.02811353 0.026801132 -0.002702762 40.21091 296.6424 18.86433
#> eta.Cl TKA eta.Ka Q Kin Kout EC50
#> 1 0.19368101 0.5686675 0.26184170 10.54673 0.5434136 1.323825 200.09
#> 2 -0.16262369 0.5686675 0.12969487 10.54673 0.5434136 1.323825 200.09
#> 3 0.22164455 0.5686675 0.24501105 10.54673 0.5434136 1.323825 200.09
#> 4 0.05997662 0.5686675 0.03059399 10.54673 0.5434136 1.323825 200.09
#> 5 0.45691421 0.5686675 -0.20098716 10.54673 0.5434136 1.323825 200.09
#> 6 -0.19943300 0.5686675 -0.36846082 10.54673 0.5434136 1.323825 200.09
For between eye variability and between occasion variability each individual simulates a number of variables that become the between eye and between occasion variability; In the case of the eye:
eye.Cl = (eye == 1) * `eye.Cl(eye==1)` + (eye == 2) * `eye.Cl(eye==2)`
So when you look the simulation each of these variables (ie
eye.Cl(eye==1)
, eye.Cl(eye==2)
, etc) they
change for each individual and when combined make the between eye
variability or the between occasion variability that can be seen in some
pharamcometric models.