Easily Specify block-diagonal matrices with lower triangular info
Usage
lotri(x, ..., cov = FALSE, rcm = FALSE, envir = parent.frame(), default = "id")
Arguments
- x
list, matrix or expression, see details
- ...
Other arguments treated as a list that will be concatenated then reapplied to this function.
- cov
either a boolean or a function accepting a matrix input.
When a boolean, `cov` describes if this matrix definition is actually a rxode2/nlmixr2-style covariance matrix. If so, `lotri()` will enforce certain regularity conditions:
- When diagonal elements are zero, the off-diagonal elements are zero. This means the covariance element is fixed to zero and not truly part of the covariance matrix in general.
- For the rest of the matrix, `lotri` will check that it is non-positive definite (which is required for covariance matrix in general)
It is sometimes difficult to adjust covariance matrices to be non-positive definite. For this reason `cov` may also be a function accepting a matrix input and returning a non-positive definite matrix from this matrix input. When this is a function, it is equivalent to `cov=TRUE` with the additional ability to correct the matrix to be non-positive definite if needed.
- rcm
logical; if `TRUE`, the matrix will be reordered to change the matrix to a banded matrix, which is easier to express in `lotri` than a full matrix. The RCM stands for the reverse Cuthill McKee (RCM) algorithm which is used for this matrix permutation. (see `rcm()`)
- envir
the
environment
in whichexpr
is to be evaluated. May also beNULL
, a list, a data frame, a pairlist or an integer as specified tosys.call
.- default
Is the default factor when no conditioning is implemented.
Details
This can take an R matrix, a list including matrices or expressions, or expressions
Expressions can take the form
name ~ estimate
Or the lower triangular matrix when "adding" the names
name1 + name2 ~ c(est1, est2, est3)
The matrices are concatenated into a block diagonal matrix, like
bdiag
, but allows expressions to specify
matrices easier.
Examples
## A few ways to specify the same matrix
lotri({et2 + et3 + et4 ~ c(40,
0.1, 20,
0.1, 0.1, 30)})
#> et2 et3 et4
#> et2 40.0 0.1 0.1
#> et3 0.1 20.0 0.1
#> et4 0.1 0.1 30.0
## You do not need to enclose in {}
lotri(et2 + et3 + et4 ~ c(40,
0.1, 20,
0.1, 0.1, 30),
et5 ~ 6)
#> et2 et3 et4 et5
#> et2 40.0 0.1 0.1 0
#> et3 0.1 20.0 0.1 0
#> et4 0.1 0.1 30.0 0
#> et5 0.0 0.0 0.0 6
## But if you do enclose in {}, you can use
## multi-line matrix specifications:
lotri({et2 + et3 + et4 ~ c(40,
0.1, 20,
0.1, 0.1, 30)
et5 ~ 6
})
#> et2 et3 et4 et5
#> et2 40.0 0.1 0.1 0
#> et3 0.1 20.0 0.1 0
#> et4 0.1 0.1 30.0 0
#> et5 0.0 0.0 0.0 6
## You can also add lists or actual R matrices as in this example:
lotri(list(et2 + et3 + et4 ~ c(40,
0.1, 20,
0.1, 0.1, 30),
matrix(1,dimnames=list("et5","et5"))))
#> et2 et3 et4 et5
#> et2 40.0 0.1 0.1 0
#> et3 0.1 20.0 0.1 0
#> et4 0.1 0.1 30.0 0
#> et5 0.0 0.0 0.0 1
## Overall this is a flexible way to specify symmetric block
## diagonal matrices.
## For rxode2, you may also condition based on different levels of
## nesting with lotri; Here is an example:
mat <- lotri(lotri(iov.Ka ~ 0.5,
iov.Cl ~ 0.6),
lotri(occ.Ka ~ 0.5,
occ.Cl ~ 0.6) | occ(lower=4,nu=3))
mat
#> [[1]]
#> iov.Ka iov.Cl
#> iov.Ka 0.5 0.0
#> iov.Cl 0.0 0.6
#>
#> $occ
#> occ.Ka occ.Cl
#> occ.Ka 0.5 0.0
#> occ.Cl 0.0 0.6
#>
#> Properties: lower, nu
## you may access features of the matrix simply by `$` that is
mat$lower # Shows the lower bound for each condition
#> [[1]]
#> iov.Ka iov.Cl
#> -Inf -Inf
#>
#> $occ
#> occ.Ka occ.Cl
#> 4 4
#>
mat$lower$occ # shows the lower bound for the occasion variable
#> occ.Ka occ.Cl
#> 4 4
## Note that `lower` fills in defaults for parameters. This is true
## for `upper` true; In fact when accessing this the defaults
## are put into the list
mat$upper
#> [[1]]
#> numeric(0)
#>
#> $occ
#> occ.Ka occ.Cl
#> Inf Inf
#>
## However all other values return NULL if they are not present like
mat$lotri
#> NULL
## And values that are specified once are only returned on one list:
mat$nu
#> $occ
#> [1] 3
#>
mat$nu$occ
#> [1] 3
mat$nu$id
#> NULL
## You can also change the default condition with `as.lotri`
mat <- as.lotri(mat, default="id")
mat
#> $id
#> iov.Ka iov.Cl
#> iov.Ka 0.5 0.0
#> iov.Cl 0.0 0.6
#>
#> $occ
#> occ.Ka occ.Cl
#> occ.Ka 0.5 0.0
#> occ.Cl 0.0 0.6
#>
#> Properties: lower, nu