Skip to contents

Simulate a from a Poisson process

Usage

rxPp(
  n,
  lambda,
  gamma = 1,
  prob = NULL,
  t0 = 0,
  tmax = Inf,
  randomOrder = FALSE
)

Arguments

n

Number of time points to simulate in the Poisson process

lambda

Rate of Poisson process

gamma

Asymmetry rate of Poisson process. When gamma=1.0, this simulates a homogenous Poisson process. When gamma<1.0, the Poisson process has more events early, when gamma > 1.0, the Poisson process has more events late in the process.

When gamma is non-zero, the tmax should not be infinite but indicate the end of the Poisson process to be simulated. In most pharamcometric cases, this will be the end of the study. Internally this uses a rate of:

l(t) = lambdagamma(t/tmax)^(gamma-1)

prob

When specified, this is a probability function with one argument, time, that gives the probability that a Poisson time t is accepted as a rejection time.

t0

the starting time of the Poisson process

tmax

the maximum time of the Poisson process

randomOrder

when TRUE randomize the order of the Poisson events. By default (FALSE) it returns the Poisson process is in order of how the events occurred.

Value

This returns a vector of the Poisson process times; If the dropout is >= tmax, then all the rest of the times are = tmax to indicate the dropout is equal to or after tmax.

Author

Matthew Fidler

Examples


## Sample homogenous Poisson process of rate 1/10
rxPp(10, 1 / 10)
#>  [1]  12.38682  13.16377  27.35351  30.27454  34.06746  39.23769  58.13355
#>  [8]  72.97714 102.32911 113.87403

## Sample inhomogenous Poisson rate of 1/10

rxPp(10, 1 / 10, gamma = 2, tmax = 100)
#>  [1]  60.28221  61.96611  62.71870  76.52984  87.25892  94.17678 100.00000
#>  [8] 100.00000 100.00000 100.00000

## Typically the Poisson process times are in a sequential order,
## using randomOrder gives the Poisson process in random order

rxPp(10, 1 / 10, gamma = 2, tmax = 10, randomOrder = TRUE)
#>  [1] 10 10 10 10 10 10 10 10 10 10

## This uses an arbitrary function to sample a non-homogenous Poisson process

rxPp(10, 1 / 10, prob = function(x) {
  1/(1+abs(x))
})
#>  [1]  149.2766  291.7273  377.5511  497.7551  625.0034  666.2430  791.0833
#>  [8]  846.1187  867.2486 1088.2302