log likelihood and derivatives for Unif distribution
Arguments
- x
variable distributed by a uniform distribution
- alpha
is the lower limit of the uniform distribution
- beta
is the upper limit of the distribution
- full
Add the data frame showing x, mean, sd as well as the fx and derivatives
Value
data frame with fx
for the log pdf value of with dProb
that has the derivatives with respect to the prob
parameters at
the observation time-point
Details
In an rxode2()
model, you can use llikUnif()
but you have to
use the x and rate arguments. You can also get the derivative of alpha
or beta
with
llikUnifDalpha()
and llikUnifDbeta()
.
Examples
# \donttest{
llikUnif(1, -2, 2)
#> fx dAlpha dBeta
#> 1 -1.386294 0.25 -0.25
et <- et(seq(1,1, length.out=4))
et$alpha <- -2
et$beta <- 2
model <- function() {
model({
fx <- llikUnif(time, alpha, beta)
dAlpha<- llikUnifDalpha(time, alpha, beta)
dBeta <- llikUnifDbeta(time, alpha, beta)
})
}
rxSolve(model, et)
#>
#>
#>
#>
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
#> ── Solved rxode2 object ──
#> ── Parameters ($params): ──
#> # A tibble: 1 × 0
#> ── Initial Conditions ($inits): ──
#> named numeric(0)
#> ── First part of data (object): ──
#> # A tibble: 4 × 6
#> time fx dAlpha dBeta alpha beta
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -1.39 0.25 -0.25 -2 2
#> 2 1 -1.39 0.25 -0.25 -2 2
#> 3 1 -1.39 0.25 -0.25 -2 2
#> 4 1 -1.39 0.25 -0.25 -2 2
# }