log likelihood and derivatives for chi-squared distribution
Arguments
- x
variable that is distributed by chi-squared distribution
- df
degrees of freedom (non-negative, but can be non-integer).
- full
Add the data frame showing x, mean, sd as well as the fx and derivatives
Value
data frame with fx
for the log pdf value of with dDf
that has the derivatives with respect to the df
parameter
the observation time-point
Details
In an rxode2()
model, you can use llikChisq()
but you have to
use the x and df arguments. You can also get the derivative of df
with
llikChisqDdf()
.
Examples
# \donttest{
llikChisq(1, df = 1:3, full=TRUE)
#> x df fx dDf
#> 1 1 1 -1.418939 0.63518142
#> 2 1 2 -1.193147 -0.05796576
#> 3 1 3 -1.418939 -0.36481858
llikChisq(1, df = 6:9)
#> fx dDf
#> 1 -3.272589 -0.8079658
#> 2 -4.126989 -0.8981519
#> 3 -5.064348 -0.9746324
#> 4 -6.072899 -1.0410091
et <- et(1:3)
et$x <- 1
model <- function() {
model({
fx <- llikChisq(x, time)
dDf <- llikChisqDdf(x, time)
})
}
rxSolve(model, et)
#>
#>
#>
#>
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’
#> ── Solved rxode2 object ──
#> ── Parameters ($params): ──
#> # A tibble: 1 × 0
#> ── Initial Conditions ($inits): ──
#> named numeric(0)
#> ── First part of data (object): ──
#> # A tibble: 3 × 4
#> time fx dDf x
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -1.42 0.635 1
#> 2 2 -1.19 -0.0580 1
#> 3 3 -1.42 -0.365 1
# }