Skip to contents

User Defined Functions

library(rxode2)
#> rxode2 3.0.2.9000 using 2 threads (see ?getRxThreads)
#>   no cache: create with `rxCreateCache()`

When defining models you may have wished to write a small R function or make a function integrate into rxode2 somehow. This article discusses 4 ways to do this:

  • A R-based user function which can be loaded as a simple function or in certain circumstances translated to C to run more efficiently

  • A C function that you define and integrate into code

  • A user defined function that changes rxode2 ui code by replacing the function with rxode2 code. This can be in the presence or absence of the data for simulation or estimation.

R based user functions

A R-based user function is the most convenient to include in the ODE, but is slower than what you could have done if it was written in C , C++ or some other compiled language. This was requested in github with an appropriate example; However, I will use a very simple example here to simply illustrate the concepts.


newAbs <- function(x) {
  if (x < 0) {
    -x
  } else {
    x
  }
}

f <- rxode2({
  a <- newAbs(time)
})
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’

e <- et(-10, 10, length.out=40)

Now that the ODE has been compiled the R functions will be called while solving the ODE. Since this is calling R, this forces the parallization to be turned off since R is single-threaded. It also takes more time to solve since it is shuttling back and forth between R and C. Lets see how this very simple function performs:

mb1 <- microbenchmark::microbenchmark(withoutC=suppressWarnings(rxSolve(f,e)))

library(ggplot2)
autoplot(mb1) + rxTheme()

Not terribly bad, even though it is shuffling between R and C.

You can make it a better by converting the functions to C:

# Create C functions automatically with `rxFun()`
rxFun(newAbs)
#> → finding duplicate expressions in d(newAbs)/d(x)...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> → optimizing duplicate expressions in d(newAbs)/d(x)...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#> converted R function 'newAbs' to C (will now use in rxode2)
#> converted R function 'rx_newAbs_d_x' to C (will now use in rxode2)
#> Added derivative table for 'newAbs'
# Recompile to use the C functions
# Note it would recompile anyway if you didn't do this step,
# it just makes sure that it doesn't recompile every step in
# the benchmark
f <- rxode2({
  a <- newAbs(time)
})
#> using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’

mb2 <- microbenchmark::microbenchmark(withC=rxSolve(f,e, cores=1))

mb <- rbind(mb1, mb2)
autoplot(mb) + rxTheme() + xgxr::xgx_scale_y_log10()
#> Scale for y is already present.
#> Adding another scale for y, which will replace the existing scale.

print(mb)
#> Unit: milliseconds
#>      expr      min       lq      mean   median       uq       max neval
#>  withoutC 9.160602 9.288991 10.010292 9.408995 9.605156 18.408115   100
#>     withC 2.847978 2.917523  3.208133 2.955865 3.199292  8.001692   100

The C version is almost twice as fast as the R version. You may have noticed the conversion also created C versions of the first derivative. This is done automatically and gives not just C versions of function, but C versions of the derivatives and registers them with rxode2. This allows the C versions to work with not only rxode2 but nlmixr2 models.

This function was setup in advance to allow this type of conversion. In general the derivatives will be calculated if there is not a return() statement in the user defined function. This means simply let R return the last value instead of explictly calling out the return(). Many people prefer this method of coding.

Even if there is a return function, the function could be converted to C. In the github issue, they used a function that would not convert the derivatives:

# Light
f_R <- function(actRad, k_0, a_k) {
  photfac <- a_k * actRad + k_0
  if (photfac > 1) {
    photfac = 1
  }
  return(photfac)
}

rxFun(f_R)
#> function contains return statement; derivatives not calculated
#> converted R function 'f_R' to C (will now use in rxode2)

While this is still helpful because some functions have early returns, the nlmixr2 models requiring derivatives would be calculated be non-optimized finite differences when this occurs. While this gets into the internals of rxode2 and nlmixr2 you can see this more easily when calculating the derivatives:

rxFromSE("Derivative(f_R(actRad, k_0, a_k),k_0)")
#> [1] "(f_R(actRad,(k_0)+6.05545445239334e-06,a_k)-f_R(actRad,k_0,a_k))/6.05545445239334e-06"

Whereas the originally defined function newAbs() would use the new derivatives calculated as well:

rxFromSE("Derivative(newAbs(x),x)")
#> [1] "rx_newAbs_d_x(x)"

In some circumstances, the conversion to C is not possible, though you can still use the R function.

There are some requirements for R functions to be integrated into the rxode2 system:

  • The function must have a set number of arguments, variable arguments like f(…) are currently not allowed.

  • The function is given each argument as a single number, and the function should return a single number

If these requirements are met you can use the R function in rxode2. Additional requirements for conversion to C include:

  • Any functions that you use within the R function must be understood and available to rxode2.

    • Practically speaking if you have fun2() which refers to fun1(), fun1() must be changed to C code and available to rxode2 before changing the function fun2() to C.
  • The functions can include if/else assignments or simple return statements (either by returning a value or having that value on a line by itself). Special R control structures and functions (like for and lapply) cannot be present.

  • The function cannot refer to any package functions

  • As mentioned, if the return() statement is present, the derivative C functions and rxode2’s derivative table is not updated.

C based functions

You can add your own C functions directly into rxode2 as well using rxFun():

fun <- "
 double fun(double a, double b, double c) {
   return a*a+b*a+c;
 }
" ## C-code for function

rxFun("fun", c("a", "b", "c"), fun)

If you wanted you could also use C functions or expressions for the derivatives by using the rxD() function:

rxD("fun", list(
   function(a, b, c) { # derivative of arg1: a
     paste0("2*", a, "+", b)
   },
   function(a, b, c) { # derivative of arg2: b
     return(a)
   },
   function(a, b, c) { # derivative of arg3: c
     return("0.0")
   }
))

Removing the function with rxRmFun() will also remove the derivative table:

rxRmFun("fun")

Functions to insert rxode2 code into the current model

This replaces rxode2 code in the current model with some expansion. This can allow more R-like functions inside of the rxode2 ui models, as well as adding approximating functions like polynomials, splines and neural networks.

An example that allows more R-like functions is below:

f <- function() {
  model({
    a <- rxpois(lambda=lam)
  })
}

# Which will evaluate into a standard rxode2 function that does not
# support named arguments (since it is translated to C)
f()

# Which is still true in the standard rxode2:

try(rxode2({
  a <- rxpois(lambda=lam)
}))

This is accomplished by a combination of two functions, which are highly commented:

rxUdfUi.rxpois <- function(fun) {
  # Fun is the language object (ie quoted R object) to be evaluated or
  # changed in the code
  .fun <- fun
  # Since the `rxpois` function is built into the rxode2 we need to
  # have a function with a different conflicts.  In this case, I take
  # the function name (fun[[1]]), and prepend a ".", which follows
  # `rxode2`'s naming convention of un-exported functions.
  #
  # This next evaluation changes the expression function to .rxpois()
  .fun[[1]] <- str2lang(paste0(".", deparse1(fun[[1]])))
  # Since this is still a R expression, you can then evaluate the
  # function .rxpois to produce the proper code:
  eval(.fun)
}

# The above s3 method can be registered in a package or you can use
# the following code to register it in your session:
rxode2::.s3register("rxode2::rxUdfUi", "rxpois")

# This is the function that changes the code as needed
.rxpois <- function(lambda) {
  # The first part of this code tries to change the value into a
  # character.  This handles cases like rxpois(lambda=lam),
  # rxpois(lam), rxpois("lam").  It also tries to evaluate the
  # argument supplied to lambda in case it comes from a different
  # location.
  .lam <- as.character(substitute(lambda))
  .tmp <- try(force(lambda), silent=TRUE)
  if (!inherits(.tmp, "try-error")) {
    if (is.character(.tmp)) {
      .lam <- lambda
    }
  }
  # This part creates a list with the replacement text, in this case
  # it woulb be rxpois(lam) where there is no equals included, as
  # required by `rxode2`:
  list(replace=paste0("rxpois(", .lam, ")"))
}

In general the list that the function needs to return can have:

  • $replace – The text that will be replaced

  • $before – lines that will be placed in the model before the current function is found

  • $after – lines that are added in the model after the current function is found

  • $iniDf – the initial estimates data.frame for this problem. While calling this function, you can retrieve the initial conditions currently used parsing you can get the prior value with rxUdfUiIniDf() and then you can modify it inside the function and return the new data.frame in this list element. This allows you add/delete initial estimates from the model as well as modify the model lines themselves.

  • $uiUseData – when TRUE, this instructs rxode2 and nlmixr2est to re-parse this function in the presence of data, this means a bit more function setup will need to be done.

  • $uiUseMv – when TRUE this instructs rxode2 to re-parse the function after the initial model variables are calculated.

In addition to the rxUdfUiIniDf() you can get information about the parser:

  • rxUdfUiParsing() returns if the rxode2 ui function is being parsed currently (this allows a function to be overloaded as a udf for calling from rxode2 as well as a function for modifying the model).

  • rxUdfUiNum() during parsing the function you are calling (in the example above rxpois() can be called multiple times. This gives the number of the function in the model in order (the first would give 1 the second, 2, etc). This can be used to create unique variables with functions like rxIntToLetter() or rxIntToBase().

  • rxUdfUiIniLhs() which gives the left-handed side of the equation where the function is found. This is also a R language object.

  • rxUdfUiIniMv() gives the model variables for parsing (can be used in functions like linCmt())

  • rxUdfUiData() which specifies the data that are being used to simulate, estimate, etc.

  • rxUdfUiEst() which gives the estimation/simulation method that is being used with the model. For example, with simulation it would be rxSolve.

Using model variables in rxode2 ui models

You can also take and change the model and take into consideration the rxode2 model variables before the full ui has completed its parsing. These rxode2 model variables has information that might change what variables you make or names of variables. For example it has what is on the left hand side of the equations ($lhs), what are the input parameters ($params) and what is the ODE states ($state)).

If you are using this approach, you will likely need to do the following steps:

  • When data are not being processed, you need to put the function in an rxode2 acceptable form, no named arguments, no strings, and only numbers or variables in the output.

  • The number of arguments of this output needs to be declared in the S3 method by adding the attribute "nargs" to method. For example, the built in testMod1() ui modification function uses only one argument when parsed

Below is a commented example of the model variables example:


testMod1 <- function(val=1) {
  # This converts the val to a character if it is somthing like testMod1(b)
  .val <- as.character(substitute(val))
  .tmp <- suppressWarnings(try(force(val), silent = TRUE))
  if (!inherits(.tmp, "try-error")) {
    if (is.character(.tmp)) {
      .val <- val
    }
  }
  # This does the UI parsing
  if (rxUdfUiParsing()) {
    # See if the model variables are available
    .mv <- rxUdfUiMv()
    if (is.null(.mv)) {
      # Put this in a rxode2 low level acceptible form, no complex
      # expressions, no named arguments, something that is suitable
      # for C.
      #
      # The `uiUsMv` tells the parser this needs to be reparsed when
      # the model variables become avaialble during parsing.
      return(list(replace=paste0("testMod1(", .val, ")"),
                  uiUseMv=TRUE))
    } else {
      # Now that we have the model variables, we can then do something
      # about this
      .vars <- .mv$params
      if (length(.vars) > 0) {
        # If there is parameters available, this dummy function times
        # the first input function by the value specified
        return(list(replace=paste0(.vars[1], "*", .val)))
      } else {
        # If the value isn't availble, simply replace the function
        # with the value.
        return(list(replace=.val))
      }
    }
  }
  stop("This function is only for use in rxode2 ui models",
       call.=FALSE)

}

rxUdfUi.testMod1 <- function(fun) {
  eval(fun)
}

# To allow this to go to the next step, you need to declare how many
# arguments this argument has, in this case 1.  Bu adding the
# attribute "nargs", rxode2 lower level parser knows how to handle
# this new function.  This allows rxode2 to generate the model
# variables and send it to the next step.

attr(rxUdfUi.testMod1, "nargs") <- 1L

# If you are in a package, you can use the rxoygen tag @export to
# register this as a rxode2 model definition.
#
# If you are using this in your own script, you need to register the s3 function
# One way to do this is:
rxode2::.s3register("rxode2::rxUdfUi", "testMod1")

## These are some examples of this function in use:

f <- function() {
  model({
    a <- b + testMod1(3)
  })
}

f <- f()

print(f)
#>  ── rxode2-based Pred model ───────────────────────────────────────────────────── 
#>  ── Model (Normalized Syntax): ── 
#> function() {
#>     model({
#>         a <- b + (b * 3)
#>     })
#> }

f <- function() {
  model({
    a <- testMod1(c)
  })
}

f <- f()

print(f)
#>  ── rxode2-based Pred model ───────────────────────────────────────────────────── 
#>  ── Model (Normalized Syntax): ── 
#> function() {
#>     model({
#>         a <- (c * c)
#>     })
#> }

f <- function() {
  model({
    a <- testMod1(1)
  })
}

f <- f()

print(f)
#>  ── rxode2-based Pred model ───────────────────────────────────────────────────── 
#>  ── Model (Normalized Syntax): ── 
#> function() {
#>     model({
#>         a <- 1
#>     })
#> }

Using data for rxode2 ui modification models

The same steps are needed to use the data in the model replacement; You can then use the data and the model to replace the values inside the model. A worked example linMod() is included that has the ability to use:

  • model variables,
  • put lines before or after the model,
  • add initial conditions
  • And use data in the initial estimates

# You can print the code:
linMod
#> function (variable, power, dv = "dv", intercept = TRUE, type = c("replace", 
#>     "before", "after"), num = NULL, iniDf = NULL, data = FALSE, 
#>     mv = FALSE) 
#> {
#>     .dv <- as.character(substitute(dv))
#>     .tmp <- suppressWarnings(try(force(dv), silent = TRUE))
#>     if (!inherits(.tmp, "try-error")) {
#>         if (is.character(.tmp)) {
#>             .dv <- dv
#>         }
#>     }
#>     .var <- as.character(substitute(variable))
#>     .tmp <- try(force(variable), silent = TRUE)
#>     .doExp3 <- FALSE
#>     if (!inherits(.tmp, "try-error")) {
#>         if (is.character(.tmp)) {
#>             .var <- variable
#>         }
#>         else if (!inherits(.tmp, "formula")) {
#>             .dv <- as.character(substitute(dv))
#>             .tmp <- suppressWarnings(try(force(dv), silent = TRUE))
#>             if (!inherits(.tmp, "try-error")) {
#>                 if (is.character(.tmp)) {
#>                   .dv <- dv
#>                 }
#>             }
#>         }
#>         else if (length(variable) == 2) {
#>             if (!identical(variable[[1]], quote(`~`))) {
#>                 stop("unexpected formula, needs to be the form ~x^3", 
#>                   call. = FALSE)
#>             }
#>             .doExp3 <- TRUE
#>             .exp3 <- variable[[2]]
#>         }
#>         else {
#>             if (length(variable) != 3) {
#>                 stop("unexpected formula, needs to be the form dv~x^3", 
#>                   call. = FALSE)
#>             }
#>             if (!identical(variable[[1]], quote(`~`))) {
#>                 stop("unexpected formula, needs to be the form dv~x^3", 
#>                   call. = FALSE)
#>             }
#>             .dv <- as.character(variable[[2]])
#>             data <- TRUE
#>             .exp3 <- variable[[3]]
#>             .doExp3 <- TRUE
#>         }
#>         if (.doExp3) {
#>             if (length(.exp3) == 1) {
#>                 .var <- variable <- as.character(.exp3)
#>                 power <- 1
#>             }
#>             else if (length(.exp3) == 3) {
#>                 if (!identical(.exp3[[1]], quote(`^`))) {
#>                   stop("unexpected formula, needs to be the form dv~x^3", 
#>                     call. = FALSE)
#>                 }
#>                 if (!is.numeric(.exp3[[3]])) {
#>                   stop("unexpected formula, needs to be the form dv~x^3", 
#>                     call. = FALSE)
#>                 }
#>                 .var <- variable <- as.character(.exp3[[2]])
#>                 power <- .exp3[[3]]
#>             }
#>             else {
#>                 stop("unexpected formula, needs to be the form dv~x^3", 
#>                   call. = FALSE)
#>             }
#>         }
#>     }
#>     checkmate::assertCharacter(.var, len = 1L, any.missing = FALSE, 
#>         pattern = "^[.]*[a-zA-Z]+[a-zA-Z0-9._]*$", min.chars = 1L, 
#>         .var.name = "variable")
#>     checkmate::assertCharacter(.dv, len = 1L, any.missing = FALSE, 
#>         pattern = "^[.]*[a-zA-Z]+[a-zA-Z0-9._]*$", min.chars = 1L, 
#>         .var.name = "dv")
#>     checkmate::assertLogical(intercept, len = 1L, any.missing = FALSE)
#>     checkmate::assertIntegerish(power, lower = ifelse(intercept, 
#>         0L, 1L), len = 1L)
#>     if (is.null(num)) {
#>         num <- rxUdfUiNum()
#>     }
#>     checkmate::assertIntegerish(num, lower = 1, any.missing = FALSE, 
#>         len = 1)
#>     if (mv && is.null(rxUdfUiMv())) {
#>         if (intercept) {
#>             return(list(replace = paste0("linModM(", .var, ", ", 
#>                 power, ")"), uiUseMv = TRUE))
#>         }
#>         else {
#>             return(list(replace = paste0("linModM0(", .var, ", ", 
#>                 power, ")"), uiUseMv = TRUE))
#>         }
#>     }
#>     if (data && is.null(rxUdfUiData())) {
#>         if (intercept) {
#>             return(list(replace = paste0("linModD(", .var, ", ", 
#>                 power, ", ", .dv, ")"), uiUseData = TRUE))
#>         }
#>         else {
#>             return(list(replace = paste0("linModD0(", .var, ", ", 
#>                 power, ",", .dv, ")"), uiUseData = TRUE))
#>         }
#>     }
#>     if (is.null(iniDf)) {
#>         iniDf <- rxUdfUiIniDf()
#>     }
#>     assertIniDf(iniDf, null.ok = TRUE)
#>     type <- match.arg(type)
#>     .mv <- rxUdfUiMv()
#>     if (!is.null(.mv)) {
#>         .varsMv <- c(.mv$lhs, .mv$params, .mv$state)
#>         .pre <- paste0(.var, num, rxIntToLetter(seq_len(power + 
#>             ifelse(intercept, 1L, 0L)) - 1L))
#>         .pre <- vapply(.pre, function(v) {
#>             if (v %in% .varsMv) {
#>                 paste0("rx.linMod.", v)
#>             }
#>             else {
#>                 v
#>             }
#>         }, character(1), USE.NAMES = FALSE)
#>     }
#>     else {
#>         .pre <- paste0("rx.linMod.", .var, num, rxIntToLetter(seq_len(power + 
#>             ifelse(intercept, 1L, 0L)) - 1L))
#>     }
#>     if (!is.null(iniDf)) {
#>         .theta <- iniDf[!is.na(iniDf$ntheta), , drop = FALSE]
#>         if (length(.theta$ntheta) > 0L) {
#>             .maxTheta <- max(.theta$ntheta)
#>             .theta1 <- .theta[1, ]
#>         }
#>         else {
#>             .maxTheta <- 0L
#>             .theta1 <- .rxBlankIni("theta")
#>         }
#>         .theta1$lower <- -Inf
#>         .theta1$upper <- Inf
#>         .theta1$fix <- FALSE
#>         .theta1$label <- NA_character_
#>         .theta1$backTransform <- NA_character_
#>         .theta1$condition <- NA_character_
#>         .theta1$err <- NA_character_
#>         .est <- rep(0, length(.pre))
#>         if (data) {
#>             .dat <- rxUdfUiData()
#>             .wdv <- which(tolower(names(.dat)) == tolower(.dv))
#>             if (length(.wdv) == 0L) {
#>                 warning(.dv, "not found in data, so no initial estimates will be set to zero")
#>             }
#>             else {
#>                 names(.dat)[.wdv] <- .dv
#>                 .model <- stats::lm(stats::as.formula(paste0(.dv, 
#>                   " ~ stats::poly(", .var, ",", power, ")", ifelse(intercept, 
#>                     "", "+0"))), data = rxUdfUiData())
#>                 .est <- coef(.model)
#>             }
#>         }
#>         .cur <- c(list(.theta), lapply(seq_along(.pre), function(i) {
#>             .cur <- .theta1
#>             .cur$name <- .pre[i]
#>             .cur$est <- .est[i]
#>             .cur$ntheta <- .maxTheta + i
#>             .cur
#>         }))
#>         .theta <- do.call(rbind, .cur)
#>         .eta <- iniDf[is.na(iniDf$neta), , drop = FALSE]
#>         .iniDf <- rbind(.theta, .eta)
#>     }
#>     else {
#>         .iniDf <- NULL
#>     }
#>     .linMod <- paste(vapply(seq_along(.pre), function(i) {
#>         if (intercept) {
#>             if (i == 1) 
#>                 return(.pre[i])
#>             if (i == 2) 
#>                 return(paste0(.pre[i], "*", .var))
#>             paste0(.pre[i], "*", paste0(.var, "^", i - 1L))
#>         }
#>         else {
#>             if (i == 1) 
#>                 return(paste0(.pre[i], "*", .var))
#>             paste0(.pre[i], "*", paste0(.var, "^", i))
#>         }
#>     }, character(1)), collapse = "+")
#>     if (type == "replace") {
#>         list(replace = .linMod, iniDf = .iniDf)
#>     }
#>     else if (type == "before") {
#>         .replace <- paste0("rx.linMod.", .var, ".f", num)
#>         list(before = paste0(.replace, " <- ", .linMod), replace = .replace, 
#>             iniDf = .iniDf)
#>     }
#>     else if (type == "after") {
#>         .replace <- paste0("rx.linMod.", .var, ".f", num)
#>         list(after = paste0(.replace, " <- ", .linMod), replace = "0", 
#>             iniDf = .iniDf)
#>     }
#> }
#> <bytecode: 0x5628932b6ca8>
#> <environment: namespace:rxode2>

# You can also print the s3 method that is used for this method

rxode2:::rxUdfUi.linMod
#> function (fun) 
#> {
#>     eval(fun)
#> }
#> <bytecode: 0x562893e67df0>
#> <environment: namespace:rxode2>
#> attr(,"nargs")
#> [1] 2