Skip to contents

Read and parse mlxtran lines

Usage

mlxtran(file, equation = FALSE, update = FALSE)

Arguments

file

mlxtran file to process

equation

parse the equation block to rxode2 (some models cannot be translated)

update

when true, try to update the parameter block to the final parameter estimates

Value

mlxtran object

Author

Matthew L. Fidler

Examples

# First load in the model; in this case the theo model
# This is modified from the Monolix demos by saving the model
# File as a text file (hence you can access without model library)
# setup.
#
# This example is also included in the monolix2rx package, so
# you refer to the location with `system.file()`:

pkgTheo <- system.file("theo", package="monolix2rx")

mlx <- mlxtran(file.path(pkgTheo, "theophylline_project.mlxtran"))
#>  integrated model file 'oral1_1cpt_kaVCl.txt' into mlxtran object
#>  reading run info (# obs, doses, Monolix Version, etc) from summary.txt
#>  done
#>  reading covariance from FisherInformation/covarianceEstimatesLin.txt
#>  done

mlx
#> DESCRIPTION:
#> The administration is extravascular with a first order absorption (rate constant ka).
#> The PK model has one compartment (volume V) and a linear elimination (clearance Cl).
#> This has been modified so that it will run without the model library
#> 
#> <DATAFILE>
#> [FILEINFO]
#> ; parsed: $DATAFILE$FILEINFO$FILEINFO
#> file = 'data/theophylline_data.txt'
#> delimiter = tab
#> header = {ID, AMT, TIME, CONC, WEIGHT, SEX}
#> 
#> [CONTENT]
#> ; parsed: $DATAFILE$CONTENT$CONTENT
#> ID = {use=identifier}
#> TIME = {use=time}
#> AMT = {use=amount}
#> CONC = {use=observation, name=CONC, type=continuous}
#> WEIGHT = {use=covariate, type=continuous}
#> SEX = {use=covariate, type=categorical}
#> 
#> <MODEL>
#> [INDIVIDUAL]
#> ; parsed: $MODEL$INDIVIDUAL$INDIVIDUAL
#> input = {ka_pop, omega_ka, V_pop, omega_V, Cl_pop, omega_Cl}
#> 
#> DEFINITION:
#> ; parsed: $MODEL$INDIVIDUAL$DEFINITION
#> ka = {distribution=lognormal, typical=ka_pop, sd=omega_ka}
#> V = {distribution=lognormal, typical=V_pop, sd=omega_V}
#> Cl = {distribution=lognormal, typical=Cl_pop, sd=omega_Cl}
#> 
#> [LONGITUDINAL]
#> ; parsed: $MODEL$LONGITUDINAL$LONGITUDINAL
#> input = {a, b, ka, V, Cl}
#> 
#> DEFINITION:
#> ; parsed: $MODEL$LONGITUDINAL$DEFINITION
#> CONC = {distribution=normal, prediction=Cc, errorModel=combined1(a, b)}
#> 
#> EQUATION:
#> 
#> ; PK model definition
#> Cc = pkmodel(ka, V, Cl)
#> 
#> OUTPUT:
#> ; parsed: $MODEL$LONGITUDINAL$OUTPUT
#> output = Cc
#> 
#> <FIT>
#> ; parsed: $FIT$FIT
#> data = {CONC}
#> model = {CONC}
#> 
#> <PARAMETER>
#> ; parsed: $PARAMETER$PARAMETER
#> Cl_pop = {value=0.1, method=MLE}
#> V_pop = {value=0.5, method=MLE}
#> a = {value=1, method=MLE}
#> b = {value=0.3, method=MLE}
#> ka_pop = {value=1, method=MLE}
#> omega_Cl = {value=1, method=MLE}
#> omega_V = {value=1, method=MLE}
#> omega_ka = {value=1, method=MLE}
#> 
#> <MONOLIX>
#> [TASKS]
#> ; parsed: $MONOLIX$TASKS$TASKS
#> populationParameters()
#> individualParameters(method = {conditionalMean, conditionalMode})
#> fim(method = Linearization)
#> logLikelihood(method = Linearization)
#> plotResult(method = {indfits, obspred, vpc, residualsscatter, residualsdistribution, parameterdistribution, covariatemodeldiagnosis, randomeffects, covariancemodeldiagnosis, saemresults})
#> 
#> [SETTINGS]
#> GLOBAL:
#> ; parsed: $MONOLIX$SETTINGS$GLOBAL
#> exportpath = 'tp'
#> 
#> ; unparsed sections:
#> ;  $MODEL$LONGITUDINAL$EQUATION