nlmixr2 optim defaults
Usage
optimControl(
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
trace = 0,
fnscale = 1,
parscale = 1,
ndeps = 0.001,
maxit = 10000,
abstol = 1e-08,
reltol = 1e-08,
alpha = 1,
beta = 0.5,
gamma = 2,
REPORT = NULL,
warn.1d.NelderMead = TRUE,
type = NULL,
lmm = 5,
factr = 1e+07,
pgtol = 0,
temp = 10,
tmax = 10,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
eventType = c("central", "forward"),
shiErr = (.Machine$double.eps)^(1/3),
shi21maxFD = 20L,
solveType = c("grad", "fun"),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
returnOptim = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", "optim", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...
)
Arguments
- method
The method to be used. See ‘Details’. Can be abbreviated.
- trace
Non-negative integer. If positive, tracing information on the progress of the optimization is produced. Higher values may produce more tracing information: for method `"L-BFGS-B"`, there are six levels of tracing. See `optim()` for more information
- fnscale
An overall scaling to be applied to the value of `fn` and `gr` during optimization. If negative, turns the problem into a maximization problem. Optimization is performed on `fn(par)/fnscale`
- parscale
A vector of scaling values for the parameters. Optimization is performed on `par/parscale` and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value. Not used (nor needed) for `method = "Brent"`
- ndeps
A vector of step sizes for the finite-difference approximation to the gradient, on `par/parscale` scale. Defaults to `1e-3`
- maxit
The maximum number of iterations. Defaults to `100` for the derivative-based methods, and `500` for `"Nelder-Mead"`.
- abstol
The absolute convergence tolerance. Only useful for non-negative functions, as a tolerance for reaching zero.
- reltol
Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a factor of `reltol * (abs(val) + reltol)` at a step
- alpha
Reflection factor for the `"Nelder-Mead"` method.
- beta
Contraction factor for the `"Nelder-Mead"` method
- gamma
Expansion factor for the `"Nelder-Mead"` method
- REPORT
The frequency of reports for the `"BFGS"`, `"L-BFGS-B"` and `"SANN"` methods if `control$trace` is positive. Defaults to every 10 iterations for `"BFGS"` and `"L-BFGS-B"`, or every 100 temperatures for `"SANN"`
- warn.1d.NelderMead
a logical indicating if the (default) `"Nelder-Mead"` method should signal a warning when used for one-dimensional minimization. As the warning is sometimes inappropriate, you can suppress it by setting this option to `FALSE`
- type
for the conjugate-gradients method. Takes value `1` for the Fletcher-Reeves update, `2` for Polak-Ribiere and `3` for Beale-Sorenson.
- lmm
is an integer giving the number of BFGS updates retained in the `"L-BFGS-B"` method, It defaults to `5`
- factr
controls the convergence of the `"L-BFGS-B"` method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is `1e7`, that is a tolerance of about `1e-8`.
- pgtol
helps control the convergence of the ‘"L-BFGS-B"’ method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed
- temp
controls the `"SANN"` method. It is the starting temperature for the cooling schedule. Defaults to `10`.
- tmax
is the number of function evaluations at each temperature for the `"SANN"` method. Defaults to `10`.
- stickyRecalcN
The number of bad ODE solves before reducing the atol/rtol for the rest of the problem.
- maxOdeRecalc
Maximum number of times to reduce the ODE tolerances and try to resolve the system if there was a bad ODE solve.
- odeRecalcFactor
The ODE recalculation factor when ODE solving goes bad, this is the factor the rtol/atol is reduced
- eventType
Event gradient type for dosing events; Can be "central" or "forward"
- shiErr
This represents the epsilon when optimizing the ideal step size for numeric differentiation using the Shi2021 method
- shi21maxFD
The maximum number of steps for the optimization of the forward difference step size when using dosing events (lag time, modeled duration/rate and bioavailability)
- solveType
tells if `optim` will use nlmixr2's analytical gradients when available (finite differences will be used for event-related parameters like parameters controlling lag time, duration/rate of infusion, and modeled bioavailability). This can be:
- `"gradient"` which will use the gradient and let `optim` calculate the finite difference hessian
- `"fun"` where optim will calculate both the finite difference gradient and the finite difference Hessian
When using nlmixr2's finite differences, the "ideal" step size for either central or forward differences are optimized for with the Shi2021 method which may give more accurate derivatives
These are only applied in the gradient based methods: "BFGS", "CG", "L-BFGS-B"
- useColor
Boolean indicating if focei can use ASCII color codes
- printNcol
Number of columns to printout before wrapping parameter estimates/gradient
Integer representing when the outer step is printed. When this is 0 or do not print the iterations. 1 is print every function evaluation (default), 5 is print every 5 evaluations.
- normType
This is the type of parameter normalization/scaling used to get the scaled initial values for nlmixr2. These are used with
scaleType
of.With the exception of
rescale2
, these come from Feature Scaling. Therescale2
The rescaling is the same type described in the OptdesX software manual.In general, all all scaling formula can be described by:
$$v_{scaled}$$ = ($$v_{unscaled}-C_{1}$$)/$$C_{2}$$
Where
The other data normalization approaches follow the following formula
$$v_{scaled}$$ = ($$v_{unscaled}-C_{1}$$)/$$C_{2}$$
rescale2
This scales all parameters from (-1 to 1). The relative differences between the parameters are preserved with this approach and the constants are:$$C_{1}$$ = (max(all unscaled values)+min(all unscaled values))/2
$$C_{2}$$ = (max(all unscaled values) - min(all unscaled values))/2
rescale
or min-max normalization. This rescales all parameters from (0 to 1). As in therescale2
the relative differences are preserved. In this approach:$$C_{1}$$ = min(all unscaled values)
$$C_{2}$$ = max(all unscaled values) - min(all unscaled values)
mean
or mean normalization. This rescales to center the parameters around the mean but the parameters are from 0 to 1. In this approach:$$C_{1}$$ = mean(all unscaled values)
$$C_{2}$$ = max(all unscaled values) - min(all unscaled values)
std
or standardization. This standardizes by the mean and standard deviation. In this approach:$$C_{1}$$ = mean(all unscaled values)
$$C_{2}$$ = sd(all unscaled values)
len
or unit length scaling. This scales the parameters to the unit length. For this approach we use the Euclidean length, that is:$$C_{1}$$ = 0
$$C_{2}$$ = $$\sqrt(v_1^2 + v_2^2 + \cdots + v_n^2)$$
constant
which does not perform data normalization. That is$$C_{1}$$ = 0
$$C_{2}$$ = 1
- scaleType
The scaling scheme for nlmixr2. The supported types are:
nlmixr2
In this approach the scaling is performed by the following equation:$$v_{scaled}$$ = ($$v_{current} - v_{init}$$)*scaleC[i] + scaleTo
The
scaleTo
parameter is specified by thenormType
, and the scales are specified byscaleC
.norm
This approach uses the simple scaling provided by thenormType
argument.mult
This approach does not use the data normalization provided bynormType
, but rather uses multiplicative scaling to a constant provided by thescaleTo
argument.In this case:
$$v_{scaled}$$ = $$v_{current}$$/$$v_{init}$$*scaleTo
multAdd
This approach changes the scaling based on the parameter being specified. If a parameter is defined in an exponential block (ie exp(theta)), then it is scaled on a linearly, that is:$$v_{scaled}$$ = ($$v_{current}-v_{init}$$) + scaleTo
Otherwise the parameter is scaled multiplicatively.
$$v_{scaled}$$ = $$v_{current}$$/$$v_{init}$$*scaleTo
- scaleCmax
Maximum value of the scaleC to prevent overflow.
- scaleCmin
Minimum value of the scaleC to prevent underflow.
- scaleC
The scaling constant used with
scaleType=nlmixr2
. When not specified, it is based on the type of parameter that is estimated. The idea is to keep the derivatives similar on a log scale to have similar gradient sizes. Hence parameters like log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scaling factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value or scaleC=ini_value)For parameters in an exponential (ie exp(theta)) or parameters specifying powers, boxCox or yeoJohnson transformations , this is 1.
For additive, proportional, lognormal error structures, these are given by 0.5*abs(initial_estimate)
Factorials are scaled by abs(1/digamma(initial_estimate+1))
parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)
These parameter scaling coefficients are chose to try to keep similar slopes among parameters. That is they all follow the slopes approximately on a log-scale.
While these are chosen in a logical manner, they may not always apply. You can specify each parameters scaling factor by this parameter if you wish.
- scaleTo
Scale the initial parameter estimate to this value. By default this is 1. When zero or below, no scaling is performed.
- gradTo
this is the factor that the gradient is scaled to before optimizing. This only works with scaleType="nlmixr2".
- rxControl
`rxode2` ODE solving options during fitting, created with `rxControl()`
- optExpression
Optimize the rxode2 expression to speed up calculation. By default this is turned on.
- sumProd
Is a boolean indicating if the model should change multiplication to high precision multiplication and sums to high precision sums using the PreciseSums package. By default this is
FALSE
.- literalFix
boolean, substitute fixed population values as literals and re-adjust ui and parameter estimates after optimization; Default is `TRUE`.
- returnOptim
logical; when TRUE this will return the optim list instead of the nlmixr2 fit object
- addProp
specifies the type of additive plus proportional errors, the one where standard deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:
$$y = f + (a + b\times f^c) \times \varepsilon$$
The combined2 error model can be described by the following equation:
$$y = f + \sqrt{a^2 + b^2\times f^{2\times c}} \times \varepsilon$$
Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)
- calcTables
This boolean is to determine if the foceiFit will calculate tables. By default this is
TRUE
- compress
Should the object have compressed items
- covMethod
allows selection of "r", which uses nlmixr2's `nlmixr2Hess()` for the hessian calculation or "optim" which uses the hessian from `stats::optim(.., hessian=TRUE)`
- adjObf
is a boolean to indicate if the objective function should be adjusted to be closer to NONMEM's default objective function. By default this is
TRUE
- ci
Confidence level for some tables. By default this is 0.95 or 95% confidence.
- sigdig
Optimization significant digits. This controls:
The tolerance of the inner and outer optimization is
10^-sigdig
The tolerance of the ODE solvers is
0.5*10^(-sigdig-2)
; For the sensitivity equations and steady-state solutions the default is0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)The tolerance of the boundary check is
5 * 10 ^ (-sigdig + 1)
- sigdigTable
Significant digits in the final output table. If not specified, then it matches the significant digits in the `sigdig` optimization algorithm. If `sigdig` is NULL, use 3.
- ...
Further arguments to be passed to
fn
andgr
.
Examples
# \donttest{
# A logit regression example with emax model
dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))
mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)
})
model({
v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))
})
}
fit2 <- nlmixr(mod, dsn, est="optim", optimControl(method="BFGS"))
#>
#>
#>
#>
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#> → loading into symengine environment...
#> → pruning branches (`if`/`else`) of population log-likelihood model...
#> ✔ done
#> → calculate jacobian
#> → calculate ∂(f)/∂(θ)
#> → finding duplicate expressions in nlm llik gradient...
#> → optimizing duplicate expressions in nlm llik gradient...
#> → finding duplicate expressions in nlm pred-only...
#> → optimizing duplicate expressions in nlm pred-only...
#>
#>
#>
#>
#> → calculating covariance
#> ✔ done
#> → loading into symengine environment...
#> → pruning branches (`if`/`else`) of full model...
#> ✔ done
#> → finding duplicate expressions in EBE model...
#> → optimizing duplicate expressions in EBE model...
#> → compiling EBE model...
#>
#>
#> ✔ done
#> → Calculating residuals/tables
#> ✔ done
#> → compress origData in nlmixr2 object, save 9104
#> → compress parHistData in nlmixr2 object, save 15360
fit2
#> ── nlmixr² log-likelihood optim with BFGS method ──
#>
#> OBJF AIC BIC Log-likelihood Condition#(Cov) Condition#(Cor)
#> lPop -694.437 1149.44 1164.163 -571.72 620.9496 76.79813
#>
#> ── Time (sec value$time): ──
#>
#> setup table compress other
#> elapsed 0.002663 0.032 0.009 2.218337
#>
#> ── (value$parFixed or value$parFixedDf): ──
#>
#> Est. SE %RSE Back-transformed(95%CI) BSV(SD) Shrink(SD)%
#> E0 -0.6182 0.2345 37.93 -0.6182 (-1.078, -0.1586)
#> Em 5.914 3.031 51.24 5.914 (-0.02573, 11.85)
#> E50 3.145 1.501 47.74 3.145 (0.2021, 6.088)
#> g 2 FIXED FIXED 2
#>
#> Covariance Type (value$covMethod): r (optim)
#> Censoring (value$censInformation): No censoring
#>
#> ── Fit Data (object value is a modified tibble): ──
#> # A tibble: 1,000 × 5
#> ID TIME DV IPRED v
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.0429 0 -0.431 -0.617
#> 2 1 0.0693 1 -1.05 -0.615
#> 3 1 0.0743 0 -0.432 -0.615
#> # ℹ 997 more rows
# }