Control for bobyqa estimation method in nlmixr2
Usage
bobyqaControl(
npt = NULL,
rhobeg = NULL,
rhoend = NULL,
iprint = 0L,
maxfun = 100000L,
returnBobyqa = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...
)
Arguments
- npt
The number of points used to approximate the objective function via a quadratic approximation. The value of npt must be in the interval [n+2,(n+1)(n+2)/2] where n is the number of parameters in `par`. Choices that exceed 2*n+1 are not recommended. If not defined, it will be set to min(n * 2, n+2).
- rhobeg
`rhobeg` and `rhoend` must be set to the initial and final values of a trust region radius, so both must be positive with `0 < rhoend < rhobeg`. Typically `rhobeg` should be about one tenth of the greatest expected change to a variable. If the user does not provide a value, this will be set to `min(0.95, 0.2 * max(abs(par)))`. Note also that smallest difference `abs(upper-lower)` should be greater than or equal to `rhobeg*2`. If this is not the case then `rhobeg` will be adjusted.
- rhoend
The smallest value of the trust region radius that is allowed. If not defined, then 1e-6 times the value set for `rhobeg` will be used.
- iprint
The value of `iprint` should be set to an integer value in `0, 1, 2, 3, ...`, which controls the amount of printing. Specifically, there is no output if `iprint=0` and there is output only at the start and the return if `iprint=1`. Otherwise, each new value of `rho` is printed, with the best vector of variables so far and the corresponding value of the objective function. Further, each new value of the objective function with its variables are output if `iprint=3`. If `iprint > 3`, the objective function value and corresponding variables are output every `iprint` evaluations. Default value is `0`.
- maxfun
The maximum allowed number of function evaluations. If this is exceeded, the method will terminate.
- returnBobyqa
return the bobyqa output instead of the nlmixr2 fit
- stickyRecalcN
The number of bad ODE solves before reducing the atol/rtol for the rest of the problem.
- maxOdeRecalc
Maximum number of times to reduce the ODE tolerances and try to resolve the system if there was a bad ODE solve.
- odeRecalcFactor
The ODE recalculation factor when ODE solving goes bad, this is the factor the rtol/atol is reduced
- useColor
Boolean indicating if focei can use ASCII color codes
- printNcol
Number of columns to printout before wrapping parameter estimates/gradient
Integer representing when the outer step is printed. When this is 0 or do not print the iterations. 1 is print every function evaluation (default), 5 is print every 5 evaluations.
- normType
This is the type of parameter normalization/scaling used to get the scaled initial values for nlmixr2. These are used with
scaleType
of.With the exception of
rescale2
, these come from Feature Scaling. Therescale2
The rescaling is the same type described in the OptdesX software manual.In general, all all scaling formula can be described by:
$$v_{scaled}$$ = ($$v_{unscaled}-C_{1}$$)/$$C_{2}$$
Where
The other data normalization approaches follow the following formula
$$v_{scaled}$$ = ($$v_{unscaled}-C_{1}$$)/$$C_{2}$$
rescale2
This scales all parameters from (-1 to 1). The relative differences between the parameters are preserved with this approach and the constants are:$$C_{1}$$ = (max(all unscaled values)+min(all unscaled values))/2
$$C_{2}$$ = (max(all unscaled values) - min(all unscaled values))/2
rescale
or min-max normalization. This rescales all parameters from (0 to 1). As in therescale2
the relative differences are preserved. In this approach:$$C_{1}$$ = min(all unscaled values)
$$C_{2}$$ = max(all unscaled values) - min(all unscaled values)
mean
or mean normalization. This rescales to center the parameters around the mean but the parameters are from 0 to 1. In this approach:$$C_{1}$$ = mean(all unscaled values)
$$C_{2}$$ = max(all unscaled values) - min(all unscaled values)
std
or standardization. This standardizes by the mean and standard deviation. In this approach:$$C_{1}$$ = mean(all unscaled values)
$$C_{2}$$ = sd(all unscaled values)
len
or unit length scaling. This scales the parameters to the unit length. For this approach we use the Euclidean length, that is:$$C_{1}$$ = 0
$$C_{2}$$ = $$\sqrt(v_1^2 + v_2^2 + \cdots + v_n^2)$$
constant
which does not perform data normalization. That is$$C_{1}$$ = 0
$$C_{2}$$ = 1
- scaleType
The scaling scheme for nlmixr2. The supported types are:
nlmixr2
In this approach the scaling is performed by the following equation:$$v_{scaled}$$ = ($$v_{current} - v_{init}$$)*scaleC[i] + scaleTo
The
scaleTo
parameter is specified by thenormType
, and the scales are specified byscaleC
.norm
This approach uses the simple scaling provided by thenormType
argument.mult
This approach does not use the data normalization provided bynormType
, but rather uses multiplicative scaling to a constant provided by thescaleTo
argument.In this case:
$$v_{scaled}$$ = $$v_{current}$$/$$v_{init}$$*scaleTo
multAdd
This approach changes the scaling based on the parameter being specified. If a parameter is defined in an exponential block (ie exp(theta)), then it is scaled on a linearly, that is:$$v_{scaled}$$ = ($$v_{current}-v_{init}$$) + scaleTo
Otherwise the parameter is scaled multiplicatively.
$$v_{scaled}$$ = $$v_{current}$$/$$v_{init}$$*scaleTo
- scaleCmax
Maximum value of the scaleC to prevent overflow.
- scaleCmin
Minimum value of the scaleC to prevent underflow.
- scaleC
The scaling constant used with
scaleType=nlmixr2
. When not specified, it is based on the type of parameter that is estimated. The idea is to keep the derivatives similar on a log scale to have similar gradient sizes. Hence parameters like log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scaling factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value or scaleC=ini_value)For parameters in an exponential (ie exp(theta)) or parameters specifying powers, boxCox or yeoJohnson transformations , this is 1.
For additive, proportional, lognormal error structures, these are given by 0.5*abs(initial_estimate)
Factorials are scaled by abs(1/digamma(initial_estimate+1))
parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)
These parameter scaling coefficients are chose to try to keep similar slopes among parameters. That is they all follow the slopes approximately on a log-scale.
While these are chosen in a logical manner, they may not always apply. You can specify each parameters scaling factor by this parameter if you wish.
- scaleTo
Scale the initial parameter estimate to this value. By default this is 1. When zero or below, no scaling is performed.
- rxControl
`rxode2` ODE solving options during fitting, created with `rxControl()`
- optExpression
Optimize the rxode2 expression to speed up calculation. By default this is turned on.
- sumProd
Is a boolean indicating if the model should change multiplication to high precision multiplication and sums to high precision sums using the PreciseSums package. By default this is
FALSE
.- literalFix
boolean, substitute fixed population values as literals and re-adjust ui and parameter estimates after optimization; Default is `TRUE`.
- addProp
specifies the type of additive plus proportional errors, the one where standard deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:
$$y = f + (a + b\times f^c) \times \varepsilon$$
The combined2 error model can be described by the following equation:
$$y = f + \sqrt{a^2 + b^2\times f^{2\times c}} \times \varepsilon$$
Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)
- calcTables
This boolean is to determine if the foceiFit will calculate tables. By default this is
TRUE
- compress
Should the object have compressed items
- covMethod
Method for calculating covariance. In this discussion, R is the Hessian matrix of the objective function. The S matrix is the sum of individual gradient cross-product (evaluated at the individual empirical Bayes estimates).
"
r,s
" Uses the sandwich matrix to calculate the covariance, that is:solve(R) %*% S %*% solve(R)
"
r
" Uses the Hessian matrix to calculate the covariance as2 %*% solve(R)
"
s
" Uses the cross-product matrix to calculate the covariance as4 %*% solve(S)
"" Does not calculate the covariance step.
- adjObf
is a boolean to indicate if the objective function should be adjusted to be closer to NONMEM's default objective function. By default this is
TRUE
- ci
Confidence level for some tables. By default this is 0.95 or 95% confidence.
- sigdig
Optimization significant digits. This controls:
The tolerance of the inner and outer optimization is
10^-sigdig
The tolerance of the ODE solvers is
0.5*10^(-sigdig-2)
; For the sensitivity equations and steady-state solutions the default is0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)The tolerance of the boundary check is
5 * 10 ^ (-sigdig + 1)
- sigdigTable
Significant digits in the final output table. If not specified, then it matches the significant digits in the `sigdig` optimization algorithm. If `sigdig` is NULL, use 3.
- ...
Ignored parameters
Examples
# \donttest{
# A logit regression example with emax model
dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))
mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)
})
model({
v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))
})
}
fit2 <- nlmixr(mod, dsn, est="bobyqa")
#>
#>
#>
#>
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#> → pruning branches (`if`/`else`) of population log-likelihood model...
#> ✔ done
#> → loading llik model into symengine environment...
#> → finding duplicate expressions in population log-likelihood model...
#> → optimizing duplicate expressions in population log-likelihood model...
#> ✔ done
#>
#>
#> using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
#> → calculating covariance
#> ✔ done
#> → loading into symengine environment...
#> → pruning branches (`if`/`else`) of full model...
#> ✔ done
#> → finding duplicate expressions in EBE model...
#> → optimizing duplicate expressions in EBE model...
#> → compiling EBE model...
#>
#>
#> using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
#> ✔ done
#> → Calculating residuals/tables
#> ✔ done
#> → compress origData in nlmixr2 object, save 9096
#> → compress parHistData in nlmixr2 object, save 15552
print(fit2)
#> ── nlmixr² log-likelihood bobyqa ──
#>
#> OBJF AIC BIC Log-likelihood Condition#(Cov) Condition#(Cor)
#> lPop -681.2477 1162.629 1177.353 -578.3147 197.8405 48.07442
#>
#> ── Time (sec $time): ──
#>
#> setup table compress other
#> elapsed 0.002977 0.038 0.01 2.575023
#>
#> ── ($parFixed or $parFixedDf): ──
#>
#> Est. SE %RSE Back-transformed(95%CI) BSV(SD) Shrink(SD)%
#> E0 -0.7442 0.2571 34.54 -0.7442 (-1.248, -0.2404)
#> Em 4.627 1.575 34.04 4.627 (1.54, 7.714)
#> E50 2.376 0.9338 39.3 2.376 (0.5458, 4.206)
#> g 2 FIXED FIXED 2
#>
#> Covariance Type ($covMethod): r
#> Censoring ($censInformation): No censoring
#>
#> ── Fit Data (object is a modified tibble): ──
#> # A tibble: 1,000 × 5
#> ID TIME DV IPRED v
#> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 1 0.0304 1 -1.13 -0.743
#> 2 1 0.0320 0 -0.389 -0.743
#> 3 1 0.0329 0 -0.389 -0.743
#> # ℹ 997 more rows
# you can also get the nlm output with
fit2$bobyqa
#> parameter estimates: -0.744249036396639, 4.62703353089203, 2.37602005800094
#> objective: 578.314687574017
#> number of function evaluations: 238
# The nlm control has been modified slightly to include
# extra components and name the parameters
# }