R/llik.R
llikBeta.Rd
Calculate the log likelihood of the binomial function (and its derivatives)
llikBeta(x, shape1, shape2, full = FALSE)
Observation
non-negative parameters of the Beta distribution.
Add the data frame showing x, mean, sd as well as the fx and derivatives
data frame with fx
for the log pdf value of with
dShape1
and dShape2
that has the derivatives with respect to the parameters at
the observation time-point
x <- seq(1e-4, 1 - 1e-4, length.out = 21)
llikBeta(x, 0.5, 0.5)
#> fx dShape1 dShape2
#> 1 3.46049030 -7.82404601 1.38619436
#> 2 0.37793108 -1.60763953 1.33490633
#> 3 0.05888752 -0.91549105 1.28084495
#> 4 -0.11510253 -0.51035907 1.22369308
#> 5 -0.22855163 -0.22284360 1.16307581
#> 6 -0.30780832 0.00019998 1.09854562
#> 7 -0.36444410 0.18245488 1.02956227
#> 8 -0.40444714 0.33655795 0.95546529
#> 9 -0.43118004 0.47005363 0.87543540
#> 10 -0.44655956 0.58780889 0.78843918
#> 11 -0.45158271 0.69314718 0.69314718
#> 12 -0.44655956 0.78843918 0.58780889
#> 13 -0.43118004 0.87543540 0.47005363
#> 14 -0.40444714 0.95546529 0.33655795
#> 15 -0.36444410 1.02956227 0.18245488
#> 16 -0.30780832 1.09854562 0.00019998
#> 17 -0.22855163 1.16307581 -0.22284360
#> 18 -0.11510253 1.22369308 -0.51035907
#> 19 0.05888752 1.28084495 -0.91549105
#> 20 0.37793108 1.33490633 -1.60763953
#> 21 3.46049030 1.38619436 -7.82404601
llikBeta(x, 1, 3, TRUE)
#> x shape1 shape2 fx dShape1 dShape2
#> 1 0.00010 1 3 1.09841228 -7.37700704 0.33323333
#> 2 0.05009 1 3 0.99583622 -1.16060056 0.28194530
#> 3 0.10008 1 3 0.88771347 -0.46845208 0.22788392
#> 4 0.15007 1 3 0.77340972 -0.06332009 0.17073205
#> 5 0.20006 1 3 0.65217518 0.22419538 0.11011478
#> 6 0.25005 1 3 0.52311481 0.44723895 0.04558459
#> 7 0.30004 1 3 0.38514811 0.62949385 -0.02339876
#> 8 0.35003 1 3 0.23695415 0.78359692 -0.09749574
#> 9 0.40002 1 3 0.07689437 0.91709260 -0.17752562
#> 10 0.45001 1 3 -0.09709808 1.03484786 -0.26452185
#> 11 0.50000 1 3 -0.28768207 1.14018615 -0.35981385
#> 12 0.54999 1 3 -0.49835866 1.23547815 -0.46515214
#> 13 0.59998 1 3 -0.73386918 1.32247438 -0.58290740
#> 14 0.64997 1 3 -1.00086054 1.40250426 -0.71640308
#> 15 0.69996 1 3 -1.30906667 1.47660124 -0.87050615
#> 16 0.74995 1 3 -1.67357647 1.54558459 -1.05276105
#> 17 0.79994 1 3 -2.11966363 1.61011478 -1.27580462
#> 18 0.84993 1 3 -2.69469457 1.67073205 -1.56332009
#> 19 0.89992 1 3 -3.50495854 1.72788392 -1.96845208
#> 20 0.94991 1 3 -4.88925549 1.78194530 -2.66060056
#> 21 0.99990 1 3 -17.32206846 1.83323333 -8.87700704